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Abstract

Let f e C[—1, 1] change its convexity finitely many times, in the interval. We are interested in
estimating the degree of approximation of f by polynomials, and by piecewise polynomials,
which are coconvex with it, namely, polynomials and piecewise polynomials that change their
convexity exactly at the points where f does. We obtain Jackson-type estimates and
summarize the positive and negative results in a truth-table as we have previously done for
comonotone approximation.
© 2002 Elsevier Science (USA). All rights reserved.
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1. Introduction

Let feC[—1, 1] change its convexity finitely many times, say s>0 times, in the
interval. We are interested in estimating the degree of approximation of f by
polynomials which are coconvex with it, namely, polynomials that change their
convexity exactly at the points where f* does.

In a recent survey [14] we have collected all known positive and negative results on
monotone and comonotone approximation on a finite interval, by algebraic
polynomials in the uniform norm (see also [11]). We have established complete
truth tables for the validity of Jackson-type estimates, involving the ordinary kth
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moduli of smoothness of the rth derivative of a given monotone or piecewise
monotone function, as well as estimates involving the Ditzian—-Totik moduli of
smoothness.

We intend here to obtain the analogous results for convex and coconvex
approximation.

There are two main ingredients in the proofs of positive results. First one has to
establish the existence of piecewise polynomials which are both coconvex with f/ and
sufficiently close to it, and second, to show that such piecewise polynomials may be
well approximated by polynomials which are coconvex with them. The latter was the
main contents of our recent paper [15]. Thus, we concentrate here on establishing the
former and on drawing the final conclusions from having obtained the two needed
ingredients.

In a forthcoming paper, we will show that if we relax the requirement on the
piecewise polynomial, allowing it not to be coconvex with f in small neighborhoods
of the points of change of convexity of f, then we may secure a little better estimates.
We call this type of approximation nearly coconvex approximation (cf. [12]).

Let I:=[—1,1] and denote by C = C° and C", respectively, the space of
continuous functions, and that of r-times continuously differentiable functions on
I, equipped with the uniform norm

[If]] = max|f (x)].

Denote by Y, seN, the set of all collections Y, :={y;};_,, such that
—l<ys<---<y;<l, and for s = 0, we write Y, := {0}. For later reference set yy :
=1 and y,,1 = —1. Finally, let Az(YS) denote the collection of all functions feC
that change convexity at the set Y, and are convex in [y; ], that is, f is convex in
[Vait1, y21], 0<i<[s/2], and it is concave in [yz;, y2i-1], | <i<[(s 4+ 1)/2]. In particular
A* = A*(Y,) is the set of convex functions on 1.

We wish to approximate a general function /' 4%(Y;), by means of polynomials
which are coconvex with £, that is, which belong to 4%(Y;). We denote the degree of
coconvex approximation by

EIEIZ)(f’ Y) = infz lf = pall,
pn€ll,nA7(Yy)

where I1, is the set of algebraic polynomials of degree not exceeding n. In particular,
we denote E.” ) = E (f, Yo), the degree of convex approximation.

We will construct continuous piecewise polynomials on the Chebyshev partition,
that are coconvex with feA*(Y,), and approximate it well. Namely, given neN,
n>1, we set x; = x;, = cos(jn/n), j =0, ...,n, the Chebyshev partition of [—1,1],
and we denote [; =1I;, = [x;,x;_1], j=1,...,n. Let X, be the collection of all
continuous piecewise polynomials of degree k — 1, on the Chebyshev partition, that
is, if Se Xy ,, then

S|,j =p, j=1,..n,



102 D. Leviatan, I.A. Shevchuk | Journal of Approximation Theory 121 (2003) 100-118

where p;elly_, and
pi(x;) =pia(x), j=1,...n—1L
Given Y;e VY, let
Oi = O0in(Ys) = (xj11,x-2), 1 yie[x;, x5-1),

where x,,.; .= —1, x_; .= 1, and denote

A

0=0(nY,) =] 0; O(n0) =0.
i=1
Finally, we write je H = H(n, Y;), if [;nO =0, and denote by Xy ,(Y;) =2k, the
subset of those piecewise polynomials for which

pj =pj+1, Whenever both j, (j+ 1)¢ H.
The following result has been proved recently by Leviatan and Shevchuk [15].

Theorem LS. For every keN and seNy there are constants ¢ = c(k,s) and ¢, =
¢, (k,s), such that if neN and Y,eYy, and SeXi,(Y,)nA*(Yy), then there is a
polynomial P, e A*(Yy) of degree <c,n, satisfying

IS — P,||<cowp (S, 1/n). (1.1)

(For the definition of wz (f, 1), see Section 2.) Thus, if we are able to construct a
good piecewise polynomial approximation, of the above type, to f eAz( Y;), then we
will have a good polynomial approximation to f.

In Section 2 we prove some auxiliary lemmas. In Section 3 we discuss convex
approximation, and Section 4 is devoted to coconvex approximation.

In the sequel we will have absolute positive constants C, and we will have positive
constants ¢ that depend only on s, k and r, that are going to be indicated. We will use
the notation C and ¢ for such constants which are of no significance to us and may
differ on different occurrences, even in the same line.

2. Auxiliary lemmas

In this section we collect some known results as well as new lemmas. In addition to
the spaces of continuously differentiable functions we need two additional spaces.
We will use the norm

Il = esssup I (x)1,

also for a function that is essentially bounded on 7, and with this notation, let the
space W' be the set of functions feC which possess an absolutely continuous
(r — 1)st derivative in I, such that ||[f")||< oo. Also let the space B", be the set of
functions f € C which possess a locally absolutely continuous (r — 1)st derivative in

(=1, 1), such that ||¢"f")|| < oo, where ¢(x) = V1 — x2.
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We sometimes wish to restrict ourselves to a subinterval [a,b] =1 in which case we
will use the notation || - [[,; for the above norms on the interval [a, b]. Then given

f€Cla,b], and ke N, we let
k
Mk k
k . 1\k—i R .
Axf (x) = [E:()( 1) <i )f(x 2/1+1h>,
be the symmetric difference of order k, defined for all x and A>0, such that

x+4hela,b]. The ordinary moduli of smoothness of f in [a,b], wk(f,1; [a,b]), are
defined by

oi(f,t;[a,b]) = sup sup|A§§f(x)\, =0,

0<h<t x

where the inner supremum is taken over all x such that xi%he [a, b]. In particular
when [a, b] = I, we write wi(f, 1) = wi(f, t;I). We also need the Ditzian—Totik (DT-
)moduli of smoothness [2] which on [a, b] are defined by

ol (f,t:la,b) = sup sup |45, f(x)], 10,
t X

0<h<

where ¢(x) = /(b — x)(x — @) and the inner supremum is taken over all x such that
x+4h¢(x)€la,b]. In particular for I, we have ¢ = ¢ and we denote wf(f,1) =
ol (f,t;1). It is well known that

WL D <el)ax(f1), >0,
If feC’, then

or(f 0 <clk, )l (fD, 1), >0, k>r (2.1)
and

ol (f,)<clk,r)tol (f7,1), >0, k>r. (2.2)
Also if f'e W', then

o (f, <) If7)], >0, (2.3)
and if f e B", then

w?(f, ) <cn |l 7], 1>0. (2.4)

We borrow from [13] the notion of the length of an interval J := [a,b] =1, relative to
its position in /. Namely,

— /]
M= @ miy
where |J| = b — a. Tt follows from [13, (2.21)] that
or(f, [T T) <ol (f, [ T]). (2.6)

In our proof of the convex case we need the following lemma which, for the sake of
convenience in its proof, we state in [0, 1].

(2.5)
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Lemma 2.1. Setr ¢(x) = /x(1 — x) and w,‘f(f, 1) = wk(f t;[0,1]). Then given k=2
and f € C[0, 1], the following holds for all 0<t<1:

or(f 2310, ) eyl (f, 0) + (k)| 45/ (1/2)].
Proof. We begin as in the proof of Marchaud inequality using divided differences.
Recall that divided differences are defined by

[x07 '--7xk—l;f] B [X], ”',xk;f}
Xo — Xx ’

[x0;f] =f(x0) and [xo,...,xx;f] = k=1.

It is well known that for all t;€[a,b], i =0, ..., k, with t;#¢;, i#j, and all x;€[a, b],
i=0,...,k, with x;#x;, i#], we have

|[t07 "'7tk;f] - [X(], "'axk;f”
—k
<e(min{minls — olmin b~ 1} ) ofb - asla.b), 27)
i#] i#]
Also, by Leviatan and Shevchuk [13, (2.29)]

on(f, 250, 1) <o (1), k=2, (2.8)

We have to estimate A’,j(f ,X0), where 0<xo<#> and h>0 is such, that
xo+kh/2€[0, )], where without loss of generality we assume that #<1/2k. Let
leN, be defined by

2lkh<i<2"kh. (2.9)
Write x° == x¢ — 7, and for all j =0, ...,/ denote
8= [x"x0 + 2h, .., X+ kYR f].
Now, forall j =0, ...,/ — 1, (2.7) yields
W16 — 01| < 2R (f, k27 iy (X0, x° 4 k27 )
< 2w (f, 2722]0,2724)
< c2_fkw,‘f+1(f,2l+’/2t),
where in the last inequality we applied (2.8). Therefore

|5 —5,+1|<C2 —jk+(k+1)( 1+j/2 l(f )

< 27wl (f,1), (2.10)
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where we have used the fact that k>2. Hence
|45 (f x0)| = ch¥ [

/-1
<Y 18— Sjur| + ch¥(8)]
j=0

e}
<col (.0 277 + e8]
j=0

=cof | (f, 1) + ct*]0)]. (2.11)
Finally,
2401 = e A% f (1/2) + 725(8 — [0, 1/k, 2/, ..., 1;f])]

(1/2)
< etk A% o (1/2)] + e w1 (£,1;]0,1])
< et |4, f(172)] + ol (F,1)

)

< |45, (1/2)] + o, (f 1) (2.12)
Combining (2.11) and (2.12) we conclude that
A5, %) <M A% (1/2)] + coof (1), (2.13)

which completes the proof. [
Translating Lemma 2.1 to the interval [—1, 1], we immediately get

Corollary 2.2. Given k=2 and f €C, we have

o(f, 2% [=1, =1+ 2D <c(k)of,, (f, 1) + c(k) |45, £ (0)], (2.14)
and by symmetry
onlf P51 = P ) <Ry, (1) + (k)P4 45 £ (0)]. (2.15)

Next, we construct convex polynomials on any given interval such that they are
close to a convex function there, and we construct polynomials which change
convexity once on a given interval and again stay close to a function which changes
convexity once there. Eventually, these two types of polynomials will provide the
pieces we glue together in order to obtain the piecewise polynomials required by
Theorem LS.

Lemma 2.3. Let k>1 and let f € C*(0, 1], be convex and such that f(0) = f'(0) =
and
wr(f",1) = 1. (2.16)

Then there exists a convex polynomial Pe Il satisfying P(0) = f(0), and P(1) =
S (1), and either P'(0) = f"(0) and P'(1)<f"(1), or P'(0)=1"(0) and P'(1) = f'(1), such
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that
If = Plloy<e, (2.17)

where ¢ = c(k).

Note that if wg(f”,1) =0, then we may take P = f. Otherwise (2.16) is just a
normalization.

Proof. By virtue of [12, Lemma 2] there exists a nondecreasing polynomial p e Il,
such that p(0) = f7(0) and p(1) =f'(1) and

1" = pllpy < (k). (2.18)
Let
P, (x) ::/ p(u)duellyy,.
0

Then P, is convex, and since p(0) = 0 and p is nondecreasing, it is nonnegative and
nondecreasing. Also, by (2.18),

1
I = Pulloy< | 1 =t duse, (2.19)
Now, if P, (1)=f(1), (note that by virtue of (2.16), f(1)>0), then set
_ S
RO

Then P is convex, P(0) = 0 =/(0), P'(0) = £;p(0) = 0 =/(0), and P(1) = /(1).
Finally,

and by (2.19),

() — POV () = P ()] + [

where we used the fact that P, (x) <P, (1) since P, is nondecreasing. Hence (2.17) is

proved.
Otherwise, P, (1) <f(1). Observe that

1
71— 1) = / uf" () du>0,

so that we may set

=P, (1
PO ) — b,

P(x) =P, (x) +f7’(1) —P.(0)
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Then P(0) =0 = £(0), P(

, P(1) =f(1) and P'(1) = f'(1), where for the last equality we
applied P, (1) = p(1) = f'(1

). Also
o S =P(1)
P(0) = —( 0 (l)f(1)>0
and
1/ - f/(l) _f(l) /x X
P'(x) 7f—’(1)—P*(l)p( )=0, 0<x<l.
Finally, by (2.19),
‘ . xf"(1) = P, (x)
[f(x) = P(x)|< [f(x) = P.(x)[ + (f(1) = P.(1 ))W

< 2c,

where we used the fact that xf’(1) — P,(x) is nondecreasing in [0,1], hence
0<xf'(1) = P, (x)<f'(1) — P,(1). Indeed, by virtue of the monotonicity of p(x),

(xf'(1) = P, (x)) = /(1) = p(x) = p(1) = p(x) >0.
Again (2.17) is proved. O

An immediate consequence is

Corollary 2.4. Let k>1 and let f € C*[a,a + h], h>0, be convex. Then there exists a
convex polynomial Pellyy, satisfying P(a) =f(a) and P(a+h) =f(a+h), and
either P'(a) = f"(a) and P'(a+ h)<f'(a+ h), or P'(a)=f"(a) and P'(a+ h) = f'(a +
h), such that

Hf - P||[a,a+h] <C‘l/lza)/f(fﬂ7 h; [aa a—+ h])7 (220)

where ¢ = c¢(k).

Lemma 2.5. Let k>1 and let 0< <1 be fixed. Assume that f € C*[0,1] is such that
fM(x)(x—=p)=0, 0<x<I.

If Pi_i €llj_, satisfies
Pr_i(x)(x — p)=0, 0<x<I, (2.21)

then there exists an o such that the polynomial
Pea() =+ O)+ [ (=) Pecs )
0

satisfies either
Py (0) =f"(0) and P (1)</f'(1), (2.22)
or

P (0)</'(0) and P, (1) =/'(1), (2.23)
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and
I = Prestllo <" = Pr-tlljp,1)- (2.24)
Note that by (2.21)
Pl (x)(x = B) = Proi (x)(x — B) =0. (2.25)

Proof. Set P(x) = [ Pr_1(u)du, and let

oy = J'(0) ift Pe(1) +1(0)<f(1),
a (1) — Pi(1) otherwise.

Since Pj;(0) =a and Pj_ (1) = a+ Pr(1), then either (2.22) or (2.23) is self-
evident. In order to prove (2.24) we observe that

10 =0 +£©) + (o ) () d

whence

(%) = Praa (x)| <If7(0) — o + 3l = Prrlljo,y 3" = Pre-tlljo.1)»
where for the right-hand inequality we applied that either f'(0) —a =0 or
S10) == fy (Pici(w) —f" () du. D

Again the following consequence is readily seen

Corollary 2.6. Let k=1 and let a<f<a+ h be fixed and assume that f € C2[a, a+ h
is such that

S"(x)(x = B)=0, a<x<a+h
If Py elly_ satisfies
Pri(x)(x — )20, asx<a-+h,

then there exists an o such that the polynomial
Pr(x) =alx—a)+f(a) + / (x — ) Py—1(u) du,

satisfies either

Pi(a)=f"(a) and P  (a+h)<f"(a+h),
or

Pi(a)</'(a) and P \(a+h)=f"(a+h),

and

W = Pt lljgasny <SP I" = Piclligasn-
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3. Convex approximation

In 1994, Hu et al. [5] and Kopotun [7] independently proved that there exists an
absolute constant C, such that for every f e 4%,

ED(f)<Cws(f,1/n), n=2. (3.1)
By virtue of (2.1), inequality (3.1) readily implies for feC",
C
EP()<on(f, 1/m), n>2, (3.2)

for all k + r<3, and thus contains results for r = 0 of [1] (for k = 1), and of [19] (for
k=2).
For the degree of unconstrained polynomial approximation,

E(f) = inf |If =pll

we have the well known Jackson estimates, namely, if f €C, then

E.(f)<c(k)ol(f,1/n), nzk—-1, k=1,2,.., (3.3)
hold, and imply that if feC"), then
k
En(f)<c(n:,r)a);f W 1/n), nzk+r—1. (3.4)

In particular if f'e W’ then

En(f)<%|lf("’ll, n=r—1, (3.5)
and if f e B", then

EN< W0l nzr1. (3.6
However, the situation in constrained approximation is much more involved. For
instance, Wu and Zhou [20] established the existence of an € 4> C! such that

nEY(f)

limsup ———>*~ = 0.

now 04(f7,1/n)
Hence, for k=5, the estimate

EQ(f)<Awi(f,1/n), n=N, (3.7)

is not valid for all f € 4%, even if we allow the constants A4 and N to depend on f (cf.
(3.3)). Wu and Zhou [20] have conjectured that (3.7) cannot be gotten (with
constants 4 and N that depend on f) even for k = 4. This is in view of an earlier
proof of Shvedov [19] that for each n>1 and any 4> 0, there exists an f == f4 eA?
for which

EP(f)> Awy(f,1/n).
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We first disprove this conjecture, that is, we show that (3.7) is valid for k = 4 with an
absolute constant C provided we allow N = N(f'). Specifically, we prove a little
more, namely,

Theorem 3.1. If f € A%, then
EQ()< Cof(f, 1 /) + < 143,5/(0)
Swa(f',l/n)—&—n—CéHfH, n>1. (3.8)
An immediate consequence is

Corollary 3.2. There exists an absolute constant C, such that for every f € A* there is
an N = N(f) for which

EP(f)<Cof(f,1/n) < Can(f,1/n), n=N. (3.9)

Note that if wy (f, 1/n) = 0 for some n, then f is a polynomial of degree <3. Thus
E,(f)(f) =0, n>=3, and Eéz)(f) =E)(f)=9 x 2’6|A§/3f(0)|. Therefore Theorem 3.1
and Corollary 3.2 remain valid in this case.

Remark. It is interesting to point out that if f is even, then AS/J(O) = 0. Hence for
even functions (3.9) actually holds for all n>1.

Recalling that previous positive estimates by Mania and Shevchuk (see [17]) for
r=2 yield for every k>1,

EQ() <o/, 1/n), n=N, (3.10)

where ¢ = c¢(k,r) and N = N(k,r) =k +r— 1, while by Mania (see [17]), (3.10)
cannot be gotten for » = 1 and k=3, (cf. (3.4)), we may now summarize the results in
the following array: where the symbol + stands for cases (k, r) for which (3.10) holds
with constants ¢ and N which may depend only on k and r, the symbol & indicates
that (3.10) is invalid with constants as above, but is valid if we allow either ¢ or N to
depend on f itself, and finally the symbol —, states that (3.10) cannot in general be
gotten (Fig. 1). The case kK = 0 describes the validity of the estimate

N, n=r—1 (3.11)

e(r)
EP()<-;

O = N3

++...

=t e

O |+
|
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for every f € W’ n A*, r>1, which readily follows from (2.3) and the validity of (3.10)
for k=1 and r=0 (cf. (3.5)).

We would like to point out another consequence of Theorem 3.1, before
proceeding to prove it. It follows from (2.4) that

Corollary 3.3. Let f e B*nA>. Then
C C
E,(f)(f)<%||<p4f<4)\|+ﬁ|[f\|, nzl.

Consequently, there exists an N = N(f') for which

C
EP(N)< llof I, n=>N. (3.12)
It has long been known that the inequality
e(r .
Eﬁz)(f)égl\w’f“)ll, n=r—1, (3.13)

is valid for r#4 (cf. (3.6) and (3.11)). It is due to Leviatan [10] for r = 1,2, and to
Kopotun [6] for r = 3 and r=5. (In fact for r<3, the more general estimate

EQ ()< Col(f, 1/n), 1<k<3,
was first proved by Leviatan [10] for k = 2, and later by Kopotun [7] for k = 3, (see
also [8]).
Moreover, for r =4, in general (3.13) cannot be gotten for any fixed n, since
Kopotun [6] has proved that for each n>1 and any 4>0, there exists a function
f =/fua€B*nA? such that

A,
EQ (> 1lo )l

However, note again that for even functions (3.12) holds for n>1 (see Remark after
Corollary 3.2).

Proof of Theorem  3.1. Recall the  Chebyshev  partition —1=
Xp<Xp1<--<x1<xp=1, and I = [x;,x;1], 1<i<n. Denote J =J, =

Lubholi, J,=J,.1 =1, ,0l,_1ul,, and J; = U;ﬁ_zlj, 3<i<n—2. For a given

feA?, Shevchuk [18], constructed a continuous piecewise cubic polynomial Se A4,
on the Chebyshev partition, such that S interpolates f on the partition, and

If = Sl < Couslf,|Jil; Ji), 3<i<n—2,

Il =Sl < Cos(f,|Ji; /i), i=1,2,n—1,n (3.14)
For the Chebyshev partition we obtain from (2.5) that /J;/ <%. Hence by virtue of
(2.6), (3.14) implies

|V—S|\,§Ccof(f,l/n), 3<ig<n—2. (3.15)

At the same time we observe that Jy = [l — 4/n* 1], with 4 = A(n)<C, and
similarly for J,. Also J, = [~1,—1+ 4/n?], with 4 = A(n)<C, and similarly for
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Ju—1. Thus by (2.14) and (2.15) we conclude that (3.14) yields

If = S|, <Cwf(f,1/n) +n—(;|A§/3f(0)|, i=1,2n—1,n (3.16)
Combining (3.15) and (3.16) we obtain

0f(5,1/n) < Carf (1,1 /n) + | 4347(0)], (3.17)

which together with Theorem LS completes the proof of Theorem 3.1. [

4. Coconvex approximation

In this section, we are dealing with functions that change convexity at least once in
[-1,1], i.e., s=1. Given Y€ Y, we wish to investigate the validity of the estimates

EQ(f, 7)) <%w§f(f("), 1/n), n=N, (4.1)

for functions f'e A>(Y;)nC", r>0, and that of

EQ(f, Y)<=|lfYl, n=N, (4.2)
nr

for functions /e A*(Y,) " W’, r=1.

Recently, Kopotun et al. [9] have proved the validity of (4.1) for all pairs (k,r),
k +r<3, with a constant ¢ = ¢(s), and with N = N(Y;). Moreover, if s =1 and
k +r<2, then (4.1) holds for all n>=1 (see [15]). However, if r =1 and k =2, and
consequently also if r = 0 and k = 3, then Pleshakov and Shatalina [16] proved that
N(Y,) may not be replaced by N(s).

In fact there are known quite a few negative results. The first, which even preceded
[16], is due to Wu and Zhou [20] who proved that for s> 1, for each k>2 and any
Y €Y, there exists an f e A?(Y,) nC', such that

. nES (f, Yy)

llillsgp o1 0. (4.3)
Therefore, (4.1) cannot be had for r = 1 and any k> 2, even with constants ¢ and N
which depend on f. Moreover, by virtue of (2.1), (4.1) cannot be gotten for r = 0 and
any k>3, again even with constants ¢ and N which depend on f. Very recently
Gilewicz and Yushchenko [4], have extended (4.3), proving that for each k>3 and
any Y,e Y, there exists anfeAz(YS) ~C?, such that

. n2E7(12> (fa YV)

hf.llsc};lp o 1n) 0. (4.4)
Note that by virtue of (2.1), (4.4) implies (4.3) but only for k>4. Again, this shows
that (4.1) cannot be gotten for r = 2 and any k>3, even with constants ¢ and N
which depend on f.
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Also, Leviatan and Shevchuk [15], extending the result of Pleshakov and Shatalina
[16], showed that if s>2, then (4.1) cannot be gotten with ¢ = ¢(k,r,s) and N =
N(k,r,s), for any r =0,1,2,3 with any k>1.

Our aim here is to prove that the answer is affirmative in all remaining cases, that
is, we prove two theorems.

Theorem 4.1. If f € A>(Y,) nC>, then for each k<3,
¢ ¢
ED(f Y <0l (1" 1/n) < son(f" 1/n), n>N, (45)
where ¢ = ¢(s) and N = N(Y). Furthermore, if s =1 and k<2, then N = k + 1.

Theorem 4.2. Let r>3 and assume that f € A*(Y)NC". Then (4.1) holds for each
k=1, with constants ¢ = c(k,r,s) and N = N(k,r,Yy). Furthermore, if s =1, then
(4.1) holds with N =k +r — 1.

An immediate consequence of the affirmative results is an affirmative answer to
the question of the validity of (4.2), namely,

Corollary 4.3. If feA*(Y,)n W', r>1, then (4.2) holds for ¢ = c(r,s), and N =
N(r,Yy) if s=22,and N=r—1ifs=1.

Also, standard technique enables one to exchange the roles of ¢ and N in the above
theorems. Namely, we can state

Corollary 4.4. If f € A*(Y,) C?, then for each k<3,
A
E,SZ)(f,Yy)<;wk(f”,l/n), nzk 41,
where A = A(Yj).

Corollary 4.5. Let r>3 and assume that feA*(Y,)nC". Then (4.1) holds with a
constant A = A(k,r, Yy), for each k=1, and all n=k +r — 1.

We are in a position to summarize the positive and negative results in two separate
truth tables, one for s = 1 (Fig. 2), and the other for s>2 (Fig. 3), where the symbol
+ stands for cases (k,r) for which (4.1) and (4.2) hold with a constant ¢ which may
depend on k and r, and N = k + r — 1, the symbol @ indicates that (4.1) is invalid
with constants as above, but is valid if we allow either ¢ or N to depend on Y, and
finally the symbol —, states that (4.1) cannot in general be gotten.

Note that by Theorem 4.2 we know that (4.1) holds at least with N = N(k,r, Yy),
and that when s>2, this cannot be improved for any r<3. In a forthcoming paper
with K. Kopotun, it will be proved that for s>2, one cannot replace any of the @®’s
by the symbol +.
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R
3 + + + + +
2 + + + & -
1 + + & - -
0 + + & - -
0 1 2 3 4 k&
Fig.2. s=1.
oo .
3 & @ 65 o &
2 & & & & —
1 & &6 &6 — —
0 © &
0 1 2 3 4 k&
Fig. 3. s=2.

Proof of Theorems 4.1 and 4.2. Given feA*(Y,)nC’, r>2, we take N(Y;) so big
that if > N, then for each 1<i<s, the set O; defined in Section 1, contains only one
i, and O; and Oy, 1<i<s— 1, are separated by at least one interval of the
partition. Thus, we have no restriction on N, if s = 1. Then we have s intervals
0; =: (a;,b;), i =1, ..., 5 such that either

S'(x)(x =) =0, a;<x<b; (4.6)
or

S'(x)(x =) <0, a;<x<b;. (4.7)

We first deal with the case f'e 4*(Y,)nC?. As per Theorem 4.1, we only have to
consider k<3, and we define polynomials Py_;€llx_1, k =1,2,3, which satisfy,
respectively,

Pr_1i(x)(x =) =0, a;<x<b; (4.8)
or
Pr_1i(x)(x —y) <0, a;<x<b;, (4.9)

and are close to f”. To this end we take Py; =0, P;; to be the linear polynomial
interpolating /" at y; and at a; or b; whichever is farther from y;, and finally P»; to be
the quadratic polynomial interpolating f” at a;, y; and b;. By Whitney’s theorem we
know that

" Pkfl.i < Coy //7 0; ;Oi y k = 172737 4.10
aes

where C depends on the ratios between |O;| and the distances between the points of
interpolation. Thus C is an absolute constant for k = 1,2, but for kX = 3 one has to
worry about either y; or y, being too close to one of the endpoints (this would make
¥ too close to by and y, too close to a,). In order to overcome this problem and have
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an absolute constant C also when k = 3, we have to take n> N = N(Y;) even when
s=1.

When f'e A>(Y,)nC", r=3, we apply [3, Corollary 3.1] to /" and r = 1, and obtain
for each k>2, the existence of Py_j;ell—; such that (4.8) and (4.9) hold,
respectively, and

1" = Pe-rillo, <l Ol (), O; 0y). (4.107)
Thus, in all cases we conclude by Corollary 2.6 and (4.8) and (4.9), that there exists a

polynomial Py ;€I which is coconvex with f on O;, Piyi(a;) = f(a;) + o,
where «; is an arbitrary constant to be prescribed, and such that

2
1f = Prcsrillo, <ol + 3107 [[f" = Pirillo, (4.11)

where by (4.10) and (4.10’) we have an estimate on the second term on the right.
Note that (4.11) implies that

|Prsri(bi) — £ (bi)| <ol +3[OP[[f" = Pi-rillo,- (4.12)
Also if (4.6) holds, then

Py i(ai) <f"(a;) and  Piy,;(bi) </ (bi), (4.13)
and if (4.7) holds, then

Piyy(@i)=f"(a;) and Py (b)) =f"(b:). (4.14)

In all other intervals I}, je H (see Section 1), f is either convex in I; or f is concave
there. If g; .= f + B;, where f; is an arbitrary constant to be prescribed, then by
Corollary 2.4, there exists a polynomial py1 ;€ Ilx11, coconvex with f and satisfying
Pi+1,(X;) = gi(x;) and pyi1j(xj—1) = gj(x;—1). Also if f is convex, then we have

Priy () =/ (x;) and pi g (-1) < S (-1), (4.15)
and if f is concave, then
Pr, () <) and piyy (o) =/ (x). (4.16)

Finally by (2.2)
[ = prcilly < 1| + elliPor (" |1 )
< |ﬁj|+cn*2w,(f(f”,l/n), (4.17)
since /1;/ < C/n.
We now construct the piecewise polynomial S eZk+27,,(YY)mA2(YY), sweeping

[—1,1] from left to right. Let a; = x;,, where O; = (ay, b,), and let o, := 0. Then for
Jo<j<n, we take ff; = 0 and set

S|, = Prerys Jo<j<n,
and

S|

0y = Pk+1‘s-
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Note that S is continuous in [—1, by), and by (4.14) and (4.15), or (4.13) and (4.16),
respectively, it is coconvex with f there. Suppose that we have defined S in [—1, b;),
1<i<s, let b; = x;, and a;_; = x;,. Then we take o;_ = >, _;(Pks1,m(bm) — f (b)),
and for j»<j</i, B; = %i—1. Then we set

S|,j_ = Drrlys 2 <J<
and

S, = Priri

01

This guarantees that S is continuous in [—1, b;_;) and coconvex with f* there. Finally
if by = xj,, then for 1</ <3, we take f; =3, _ | (Pks1,m(bm) — f(bn)), and we set

S|,j_ =Py, 1<J<Js.

It is readily seen that we have obtained an Se€Xj5,(Y;) mAZ(Ys)‘
Again, we deal first with f e C>. Since /0;/ < C/n, it follows by (4.10) that

" = Pr-rillo, <Col(f",1/n), k=1,2,3.
Hence, combining with (4.11), (4.12) and (4.17), yields

If = S||<Csn 20l (f",1/n), k=1,2,3. (4.18)
This in turn implies

w,fH(S, 1/n)< w?ilz (f, 1/n) + Csnizw/(f(f”v 1/n)

<enol(f",1/n), k=1,2,3. (4.19)

Therefore, we apply (4.18), (4.19), and Theorem LS to obtain a polynomial
P,elIl,nA*(Y;) such that

If = Pa||<en 0l (f",1/n), k=1,2,3, n=N. (4.20)

This completes the proof of (4.5) with ¢ = ¢(s) and N = N(Y;). If s=land k = 1,2,
then so far we have imposed no restriction on N, except for what is implied by
Theorem LS, namely, that N > ¢, (k). By the constrained Whitney inequalities due to

Pleshakov and Shatalina [16], we may take N = k + 1. Thus Theorem 4.1 is proven.
Now we assume that feC’, r>3 and let k>2. Then it follows by (4.10) that

1" = Pecrillo,<en” o (FP),1/m).
Hence, combining with (4.11), (4.12) and (4.17), yields
If = S||<esnwf (Y, 1/n). (4.18")
This in turn gives
w;fﬁ(& 1/n)< wz”(f, 1/n) + csn’3w;ffl(f(3), 1/n)
<enal [(f9,1/n), (4.19")
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where ¢ = ¢(k, s). Therefore, we apply (4.18'), (4.19'), and Theorem LS to obtain a
polynomial P,ell, mAz( Y;) such that

If = Pul|<en 0l ((FP,1/n), n=N. (4.20)

Since f'eC’, r=3, it follows by (2.2) that (4.1) is valid for all ¥>3 and k=1, with
c=clk,r,s) and N = N(k,r,Y;). For s = 1, we so far have imposed no restriction
on N, except for what is implied by Theorem LS, namely, that N>c, (k,r). Again,
by the constrained Whitney inequalities of Pleshakov and Shatalina [16], we may
take N =k +r— 1. Theorem 4.2 is proved. [
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